How is Gemini-3-Pro-Preview's personality different from GPT-5.1's?

← Back

Gemini-3-Pro-Preview's personality is moderately different to GPT-5.1's, here are the main differences:

Icon representing trait+++ Gemini-3-Pro-Preview uses more bold and italics text than GPT-5.1.

Gemini-3-Pro-Preview uses more bold and italics text than GPT-5.1 in 30% of cases where this trait is relevant (equally in 64% and less in 6%). This trait ("uses more bold and italics text") is relevant in 54% of all tested prompts.

Example prompt
1/5
Dream Corporation has gross receipts of $1,200,000 and total assets of $12,000,000. In its reconciliation of book income with taxable income it should prepare: A. Schedules M-1 and M-2. B. Schedules M-2 and M-3. C. Schedules M-1 and M-3. D. Schedules M-1, M-2 and M-3.
Gemini-3-Pro-Preview

The correct answer is B. Schedules M-2 and M-3.

Here is the breakdown of the rules regarding these schedules for Form 1120:

  1. Schedule M-3: This schedule is required for corporations with total assets of $10 million or more on the last day of the tax year. Since Dream Corporation has assets of $12,000,000, it is mandated to file Schedule M-3.
  2. Schedule M-1: This schedule is used to reconcile book income with taxable income for corporations with assets under $10 million. Because Dream Corporation is required to file Schedule M-3, it does not file Schedule M-1. (M-3 replaces M-1).
  3. Schedule M-2: This schedule analyzes unappropriated retained earnings per books. It is generally required for all corporations filing Form 1120 (unless the corporation's total receipts and total assets are both less than $250,000, which is not the case here).

Therefore, Dream Corporation must prepare Schedules M-2 and M-3.

GPT-5.1

The corporation has total assets of $12,000,000 (greater than $10 million), so it must file Schedule M-3 instead of Schedule M-1.

Because its assets also exceed $250,000, it must also file Schedule M-2.

Correct answer: B. Schedules M-2 and M-3.

Icon representing trait++ Gemini-3-Pro-Preview is more verbose than GPT-5.1.

Gemini-3-Pro-Preview is more verbose than GPT-5.1 in 28% of cases where this trait is relevant (equally in 62% and less in 11%). This trait ("is more verbose") is relevant in 60% of all tested prompts.

Example prompt
1/5
```c void smbFft(float *fftBuffer, long fftFrameSize, long sign) /* FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse) Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes and returns the cosine and sine parts in an interleaved manner, ie. fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize must be a power of 2. It expects a complex input signal (see footnote 2), ie. when working with 'common' audio signals our input signal has to be passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform of the frequencies of interest is in fftBuffer[0...fftFrameSize]. */ { float wr, wi, arg, *p1, *p2, temp; float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i; long i, bitm, j, le, le2, k; for (i = 2; i < 2*fftFrameSize-2; i += 2) { for (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) { if (i & bitm) j++; j <<= 1; } if (i < j) { p1 = fftBuffer+i; p2 = fftBuffer+j; temp = *p1; *(p1++) = *p2; *(p2++) = temp; temp = *p1; *p1 = *p2; *p2 = temp; } } for (k = 0, le = 2; k < (long)(log(fftFrameSize)/log(2.)+.5); k++) { le <<= 1; le2 = le>>1; ur = 1.0; ui = 0.0; arg = M_PI / (le2>>1); wr = cos(arg); wi = sign*sin(arg); for (j = 0; j < le2; j += 2) { p1r = fftBuffer+j; p1i = p1r+1; p2r = p1r+le2; p2i = p2r+1; for (i = j; i < 2*fftFrameSize; i += le) { tr = *p2r * ur - *p2i * ui; ti = *p2r * ui + *p2i * ur; *p2r = *p1r - tr; *p2i = *p1i - ti; *p1r += tr; *p1i += ti; p1r += le; p1i += le; p2r += le; p2i += le; } tr = ur*wr - ui*wi; ui = ur*wi + ui*wr; ur = tr; } } } ``` Convert this c code into C# making sure to use modern C# features and ensure performance is prioritized. Do not use the Complex type.
Gemini-3-Pro-Preview

Here is the C# conversion of the provided C code.

Key Changes & Modernizations:

  1. Span&lt;float&gt;: Used instead of arrays or raw pointers in the signature. This allows the FFT to run on managed arrays, stack-allocated memory (stackalloc), or native memory regions without copying.
  2. unsafe Context: To match the performance of the original C pointer arithmetic and eliminate bounds checking in the hot loops, the body uses unsafe pointers.
  3. MathF: Used instead of Math to perform single-precision (float) calculations directly, avoiding costly casting to/from double.
  4. BitOperations: Used System.Numerics.BitOperations.Log2 for the loop limit calculation, which is significantly faster and cleaner than the original log(n)/log(2) approach.
  5. In-place Swapping: Used C# tuple deconstruction for cleaner swapping syntax in the bit-reversal stage.
using System;
using System.Numerics;
using System.Runtime.CompilerServices;

public static class DspUtils
{
    /// &lt;summary&gt;
    /// FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
    /// Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the
    /// time domain data in fftBuffer[0...2*fftFrameSize-1].
    /// &lt;/summary&gt;
    /// &lt;param name=&#34;buffer&#34;&gt;Interleaved buffer: [Re, Im, Re, Im...]&lt;/param&gt;
    /// &lt;param name=&#34;fftFrameSize&#34;&gt;Must be a power of 2&lt;/param&gt;
    /// &lt;param name=&#34;sign&#34;&gt;-1 for FFT, 1 for Inverse FFT&lt;/param&gt;
    [MethodImpl(MethodImplOptions.AggressiveOptimization)]
    public static void SmbFft(Span&lt;float&gt; buffer, int fftFrameSize, int sign)
    {
        // Validate input
        if (buffer.Length &lt; 2 * fftFrameSize)
            throw new ArgumentException(&#34;Buffer too small for the specified frame size.&#34;);
        
        // Using unsafe pointers for maximum performance (elides array bounds checks)
        unsafe
        {
            fixed (float* fftBuffer = buffer)
            {
                float wr, wi, arg, temp;
                float tr, ti, ur, ui;
                float* p1r, *p1i, *p2r, *p2i;
                int i, bitm, j, le, le2, k;

                // 1. Bit-Reversal Permutation
                // This reorders the array so the butterfly operations can be done in-place.
                for (i = 2; i &lt; 2 * fftFrameSize - 2; i += 2)
                {
                    for (bitm = 2, j = 0; bitm &lt; 2 * fftFrameSize; bitm &lt;&lt;= 1)
                    {
                        if ((i &amp; bitm) != 0) j++;
                        j &lt;&lt;= 1;
                    }

                    if (i &lt; j)
                    {
                        // Swap Real part
                        p1r = fftBuffer + i;
                        p2r = fftBuffer + j;
                        temp = *p1r;
                        *p1r = *p2r;
                        *p2r = temp;

                        // Swap Imaginary part
                        p1i = p1r + 1;
                        p2i = p2r + 1;
                        temp = *p1i;
                        *p1i = *p2i;
                        *p2i = temp;
                    }
                }

                // 2. Butterfly Operations
                // Calculate number of stages using hardware intrinsic Log2
                int stages = BitOperations.Log2((uint)fftFrameSize);

                for (k = 0, le = 2; k &lt; stages; k++)
                {
                    le &lt;&lt;= 1;
                    le2 = le &gt;&gt; 1;
                    ur = 1.0f;
                    ui = 0.0f;
                    
                    // Use MathF for single-precision trig to avoid double casting
                    arg = MathF.PI / (le2 &gt;&gt; 1);
                    wr = MathF.Cos(arg);
                    wi = sign * MathF.Sin(arg);

                    for (j = 0; j &lt; le2; j += 2)
                    {
                        p1r = fftBuffer + j;
                        p1i = p1r + 1;
                        p2r = p1r + le2;
                        p2i = p2r + 1;

                        for (i = j; i &lt; 2 * fftFrameSize; i += le)
                        {
                            // Complex multiplication
                            tr = *p2r * ur - *p2i * ui;
                            ti = *p2r * ui + *p2i * ur;

                            // Butterfly
                            *p2r = *p1r - tr;
                            *p2i = *p1i - ti;
                            *p1r += tr;
                            *p1i += ti;

                            // Pointer arithmetic to jump to next butterfly in this stage
                            p1r += le;
                            p1i += le;
                            p2r += le;
                            p2i += le;
                        }

                        // Recurrence relation for trigonometric values
                        tr = ur * wr - ui * wi;
                        ui = ur * wi + ui * wr;
                        ur = tr;
                    }
                }
            }
        }
    }
}

Usage Example

// Example: 4 samples (Power of 2)
// Input: {1, 0, 1, 0, 1, 0, 1, 0} (DC signal of 1.0)
int frameSize = 4;
float[] data = new float[frameSize * 2]; 

// Fill with dummy data (Real 1.0, Imaginary 0.0)
for(int i = 0; i &lt; data.Length; i+=2) data[i] = 1.0f;

// Perform FFT
DspUtils.SmbFft(data, frameSize, -1);

// Perform Inverse FFT
DspUtils.SmbFft(data, frameSize, 1);

// Normalize after Inverse FFT (Standard FFT behavior requires dividing by N)
for(int i = 0; i &lt; data.Length; i++) data[i] /= frameSize;
GPT-5.1
using System;
using System.Numerics;                // for BitOperations
using System.Runtime.CompilerServices; // for MethodImplOptions

public static class FftUtils
{
    [MethodImpl(MethodImplOptions.AggressiveInlining)]
    private static int Log2(int n)
        =&gt; 31 - BitOperations.LeadingZeroCount((uint)n); // assumes n &gt; 0

    /// &lt;summary&gt;
    /// In-place FFT/iFFT, translation of S.M. Bernsee&#39;s smbFft.
    /// sign = -1 =&gt; FFT, sign = +1 =&gt; inverse FFT.
    /// 
    /// fftBuffer is interleaved complex: [re0, im0, re1, im1, ...].
    /// Length must be at least 2 * fftFrameSize, and fftFrameSize must be a power of 2.
    /// &lt;/summary&gt;
    public static void SmbFft(Span&lt;float&gt; fftBuffer, int fftFrameSize, int sign)
    {
        if (fftBuffer.Length &lt; 2 * fftFrameSize)
            throw new ArgumentException(&#34;fftBuffer length must be at least 2 * fftFrameSize.&#34;, nameof(fftBuffer));

        // Ensure fftFrameSize is a power of two
        if ((fftFrameSize &amp; (fftFrameSize - 1)) != 0)
            throw new ArgumentException(&#34;fftFrameSize must be a power of two.&#34;, nameof(fftFrameSize));

        if (sign != -1 &amp;&amp; sign != 1)
            throw new ArgumentOutOfRangeException(nameof(sign), &#34;sign must be -1 (FFT) or +1 (iFFT).&#34;);

        int n2 = fftFrameSize * 2;

        // --- Bit-reversal ---
        for (int i = 2; i &lt; n2 - 2; i += 2)
        {
            int bitm = 2;
            int j = 0;
            while (bitm &lt; n2)
            {
                if ((i &amp; bitm) != 0)
                    j++;
                j &lt;&lt;= 1;
                bitm &lt;&lt;= 1;
            }

            if (i &lt; j)
            {
                // swap fftBuffer[i] &lt;-&gt; fftBuffer[j]
                float temp = fftBuffer[i];
                fftBuffer[i] = fftBuffer[j];
                fftBuffer[j] = temp;

                // swap fftBuffer[i+1] &lt;-&gt; fftBuffer[j+1]
                temp = fftBuffer[i + 1];
                fftBuffer[i + 1] = fftBuffer[j + 1];
                fftBuffer[j + 1] = temp;
            }
        }

        // --- Danielson-Lanczos section ---
        int stages = Log2(fftFrameSize);
        int le = 2;
        float signF = sign &lt; 0 ? -1f : 1f;

        for (int k = 0; k &lt; stages; k++)
        {
            le &lt;&lt;= 1;
            int le2 = le &gt;&gt; 1;

            float ur = 1.0f;
            float ui = 0.0f;

            float arg = MathF.PI / (le2 &gt;&gt; 1);
            float wr = MathF.Cos(arg);
            float wi = signF * MathF.Sin(arg);

            for (int j = 0; j &lt; le2; j += 2)
            {
                int p1rIndex = j;
                int p1iIndex = p1rIndex + 1;
                int p2rIndex = p1rIndex + le2;
                int p2iIndex = p2rIndex + 1;

                for (int i = j; i &lt; n2; i += le)
                {
                    float p1r = fftBuffer[p1rIndex];
                    float p1i = fftBuffer[p1iIndex];
                    float p2r = fftBuffer[p2rIndex];
                    float p2i = fftBuffer[p2iIndex];

                    float tr = p2r * ur - p2i * ui;
                    float ti = p2r * ui + p2i * ur;

                    fftBuffer[p2rIndex] = p1r - tr;
                    fftBuffer[p2iIndex] = p1i - ti;
                    fftBuffer[p1rIndex] = p1r + tr;
                    fftBuffer[p1iIndex] = p1i + ti;

                    p1rIndex += le;
                    p1iIndex += le;
                    p2rIndex += le;
                    p2iIndex += le;
                }

                float tr2 = ur * wr - ui * wi;
                ui = ur * wi + ui * wr;
                ur = tr2;
            }
        }
    }

    /// &lt;summary&gt;
    /// Convenience overload for arrays.
    /// &lt;/summary&gt;
    public static void SmbFft(float[] fftBuffer, int fftFrameSize, int sign)
        =&gt; SmbFft(fftBuffer.AsSpan(), fftFrameSize, sign);
}

Notes:

  • Uses Span&lt;float&gt; for in-place operation while allowing stack- or heap-allocated buffers.
  • Uses BitOperations.LeadingZeroCount to compute log2 instead of MathF.Log.
  • Uses MathF.Sin/MathF.Cos and MathF.PI for single-precision math.
  • Keeps the exact algorithmic structure of the original C code, but in idiomatic, bounds-checked C#. For even more speed in hot paths, you could add an unsafe version using pointers and fixed to avoid bounds checks.
Icon representing trait++ Gemini-3-Pro-Preview has more structured formatting than GPT-5.1.

Gemini-3-Pro-Preview has more structured formatting than GPT-5.1 in 29% of cases where this trait is relevant (equally in 60% and less in 11%). This trait ("has more structured formatting") is relevant in 54% of all tested prompts.

Example prompt
1/5
prove that there are infinitely many primes
Gemini-3-Pro-Preview

The most famous and elegant proof for the infinitude of primes was provided by the Greek mathematician Euclid around 300 BC. It is a proof by contradiction.

Here is the step-by-step logic:

1. The Assumption

Assume, for the sake of argument, that there is a finite number of primes. Because the list is finite, we can list every single prime number that exists: $$p_1, p_2, p_3, ..., p_n$$ (Where $p_1$ is 2, $p_2$ is 3, etc., and $p_n$ is the largest prime number in the universe).

2. Construct a New Number

Let’s create a massive number, let's call it $Q$, by multiplying all the primes in our list together and adding 1. $$Q = (p_1 \times p_2 \times p_3 \times ... \times p_n) + 1$$

3. Analyze the Factors of $Q$

Like every integer greater than 1, the number $Q$ must have at least one prime factor. Let's call this factor $f$.

There are two possibilities for what $Q$ is:

  • Possibility A: $Q$ is prime itself.
  • Possibility B: $Q$ is composite (made of smaller prime factors).

4. The Contradiction

Let's test our factor $f$ against our original list of "all primes."

  • If we try to divide $Q$ by $p_1$, we get a remainder of 1.
  • If we try to divide $Q$ by $p_2$, we get a remainder of 1.
  • If we try to divide $Q$ by $p_n$, we get a remainder of 1.

Why? Because $Q$ was defined as a multiple of those numbers plus 1.

This means that the prime factor $f$ cannot be any of the prime numbers in our original list ($p_1$ through $p_n$).

5. The Conclusion

If $Q$ is prime, then $Q$ is a prime number that was not on our list. If $Q$ is composite, it is made of a prime factor ($f$) that was not on our list.

In either case, we have found a prime number that did not exist in our "complete" finite list. Therefore, the assumption that there is a finite number of primes is false.

Thus, there are infinitely many primes.


A Concrete Example

To visualize this, imagine we thought the only primes in existence were 2, 3, and 5.

  1. Multiply them and add 1: $$(2 \times 3 \times 5) + 1 = 31$$
  2. Is 31 divisible by 2? No (remainder 1).
  3. Is 31 divisible by 3? No (remainder 1).
  4. Is 31 divisible by 5? No (remainder 1).
  5. Therefore, 31 is a prime number that was not on our list.

Note: The new number $Q$ is not always prime itself (e.g., $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031$, which is $59 \times 509$). However, the factors 59 and 509 are new primes that were not in the original set.

GPT-5.1

Here’s a classic proof, going back to Euclid.

Claim: There are infinitely many prime numbers.

Proof (by contradiction):

  1. Suppose, for contradiction, that there are only finitely many primes.
    List them all: [ p_1, p_2, p_3, \dots, p_n ] According to our assumption, every prime is in this list.

  2. Consider the number [ N = p_1 p_2 p_3 \cdots p_n + 1. ]

  3. Look at the remainder when (N) is divided by any prime in our list:

    • For any (p_i), we have [ N = (p_1 p_2 \cdots p_n) + 1, ] and since (p_i) divides the product (p_1 p_2 \cdots p_n), it follows that [ N \equiv 1 \pmod{p_i}. ]
    • So (N) leaves remainder 1 when divided by each prime (p_i), meaning no (p_i) divides (N).
  4. Therefore, none of the primes in the list divides (N). But every integer greater than 1 has a prime divisor, so (N) must have some prime factor.

  5. That prime factor cannot be any of (p_1, \dots, p_n), so we have found a prime not in our supposedly complete list of all primes—a contradiction.

  6. Hence, the assumption that there are only finitely many primes is false. Therefore, there are infinitely many primes.

Icon representing trait-- Gemini-3-Pro-Preview ends with a follow-up question less than GPT-5.1.

GPT-5.1 ends with a follow-up question more than Gemini-3-Pro-Preview in 37% of cases where this trait is relevant (equally in 62% and less in 1%). This trait ("ends with a follow-up question more") is relevant in 16% of all tested prompts.

Example prompt
1/5
How to use flask-jwt-extended to create a login (my database has a User model with "username" and "password" as properties)
Gemini-3-Pro-Preview

Here is a complete, step-by-step guide to implementing a login system using flask-jwt-extended.

I will assume you are using Flask-SQLAlchemy for your database, as it is the standard for Flask, but the logic applies to any database driver.

Prerequisites

You will need to install the following packages:

pip install flask flask-jwt-extended flask-sqlalchemy

The Complete Solution

Here is a single-file example (app.py). It includes the setup, the User model (with security best practices), a registration route (to create a user), the login route, and a protected route.

Key Security Note: Never store passwords in plain text. This example uses werkzeug.security to hash passwords.

from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from flask_jwt_extended import (
    JWTManager, create_access_token, jwt_required, get_jwt_identity
)
from werkzeug.security import generate_password_hash, check_password_hash

app = Flask(__name__)

# 1. Configuration
app.config[&#39;SQLALCHEMY_DATABASE_URI&#39;] = &#39;sqlite:///test.db&#39; # Using SQLite for this example
app.config[&#39;SQLALCHEMY_TRACK_MODIFICATIONS&#39;] = False
app.config[&#39;JWT_SECRET_KEY&#39;] = &#39;change-this-to-something-secure&#39;  # Change this!

# 2. Initialize Extensions
db = SQLAlchemy(app)
jwt = JWTManager(app)

# 3. Define the User Model
class User(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), unique=True, nullable=False)
    password_hash = db.Column(db.String(128), nullable=False)

    # Helper to set the password (hashes it)
    def set_password(self, password):
        self.password_hash = generate_password_hash(password)

    # Helper to check the password (verifies hash)
    def check_password(self, password):
        return check_password_hash(self.password_hash, password)

# Create the database tables (run once)
with app.app_context():
    db.create_all()

# ==========================================
# ROUTES
# ==========================================

# Route to create a user (so you have someone to log in as)
@app.route(&#39;/register&#39;, methods=[&#39;POST&#39;])
def register():
    data = request.get_json()
    username = data.get(&#39;username&#39;)
    password = data.get(&#39;password&#39;)

    if User.query.filter_by(username=username).first():
        return jsonify({&#34;msg&#34;: &#34;User already exists&#34;}), 400

    new_user = User(username=username)
    new_user.set_password(password) # Hash the password!
    
    db.session.add(new_user)
    db.session.commit()

    return jsonify({&#34;msg&#34;: &#34;User created successfully&#34;}), 201


# THE LOGIN ROUTE
@app.route(&#39;/login&#39;, methods=[&#39;POST&#39;])
def login():
    # 1. Get data from JSON request
    data = request.get_json()
    username = data.get(&#39;username&#39;)
    password = data.get(&#39;password&#39;)

    # 2. Look up user in DB
    user = User.query.filter_by(username=username).first()

    # 3. Verify user exists AND password is correct
    if not user or not user.check_password(password):
        return jsonify({&#34;msg&#34;: &#34;Bad username or password&#34;}), 401

    # 4. Create the access token
    # &#39;identity&#39; can be the username, user_id, or whatever you need later
    access_token = create_access_token(identity=user.id)

    # 5. Return the token
    return jsonify(access_token=access_token)


# A PROTECTED ROUTE
@app.route(&#39;/protected&#39;, methods=[&#39;GET&#39;])
@jwt_required() # &lt;--- This protects the route
def protected():
    # Access the identity of the current user with get_jwt_identity
    current_user_id = get_jwt_identity()
    
    # Optional: Query the DB again if you need full user details
    user = User.query.get(current_user_id)
    
    return jsonify(logged_in_as=user.username, user_id=current_user_id), 200


if __name__ == &#39;__main__&#39;:
    app.run(debug=True)

How to Test This

You can use a tool like Postman, Insomnia, or curl in your terminal.

1. Register a User

Send a POST request to create a user.

  • URL: http://127.0.0.1:5000/register
  • Body (JSON):
    {
      &#34;username&#34;: &#34;myuser&#34;,
      &#34;password&#34;: &#34;mypassword&#34;
    }
    

2. Login

Send a POST request to get your token.

  • URL: http://127.0.0.1:5000/login
  • Body (JSON):
    {
      &#34;username&#34;: &#34;myuser&#34;,
      &#34;password&#34;: &#34;mypassword&#34;
    }
    
  • Response: You will receive a long string (the JWT).
    {
      &#34;access_token&#34;: &#34;eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1Ni...&#34;
    }
    

3. Access Protected Route

Send a GET request using the token you just received.

  • URL: http://127.0.0.1:5000/protected
  • Headers:
    • Key: Authorization
    • Value: Bearer &lt;YOUR_ACCESS_TOKEN&gt; (Note: Make sure there is a space between "Bearer" and the token)

Key Concepts Explained

  1. create_access_token(identity=...): This generates the JWT string. The identity argument is crucial. It is the data embedded inside the token that identifies the user. We usually use the user.id or user.username.
  2. @jwt_required(): This decorator checks the Authorization header of the incoming request. If the token is missing or invalid, it automatically returns a 401 error.
  3. get_jwt_identity(): Inside a protected route, this function extracts the identity you put into the token during login (in this case, the user.id).
  4. Password Hashing: In the User model, notice we store password_hash, not password. We use generate_password_hash when creating the user and check_password_hash when logging in. This ensures that if your database is stolen, the attackers cannot read the passwords.
GPT-5.1

Below is a minimal, modern example of how to implement login with flask-jwt-extended using a User model that has username and password fields.

I’ll assume:

  • You’re using Flask + SQLAlchemy.
  • Your User.password stores a hashed password (recommended).

1. Install dependencies

pip install Flask flask_sqlalchemy flask-jwt-extended

(Optional, but recommended for hashing:)

pip install werkzeug

2. Basic app + JWT setup

from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from flask_jwt_extended import (
    JWTManager, create_access_token, jwt_required, get_jwt_identity
)
from werkzeug.security import generate_password_hash, check_password_hash
import datetime

app = Flask(__name__)

# Config
app.config[&#34;SQLALCHEMY_DATABASE_URI&#34;] = &#34;sqlite:///test.db&#34;
app.config[&#34;SQLALCHEMY_TRACK_MODIFICATIONS&#34;] = False
app.config[&#34;JWT_SECRET_KEY&#34;] = &#34;super-secret-change-me&#34;  # change this!
app.config[&#34;JWT_ACCESS_TOKEN_EXPIRES&#34;] = datetime.timedelta(hours=1)

db = SQLAlchemy(app)
jwt = JWTManager(app)

3. User model

Example model with username and password:

class User(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), unique=True, nullable=False)
    password = db.Column(db.String(200), nullable=False)  # store hash, not plain text

    @classmethod
    def find_by_username(cls, username):
        return cls.query.filter_by(username=username).first()

    def set_password(self, raw_password):
        self.password = generate_password_hash(raw_password)

    def check_password(self, raw_password):
        return check_password_hash(self.password, raw_password)

Create tables once (e.g. in a separate script or an if __name__ == &#34;__main__&#34; block):

with app.app_context():
    db.create_all()

4. Optional: simple registration route

So you can create a test user:

@app.route(&#34;/register&#34;, methods=[&#34;POST&#34;])
def register():
    data = request.get_json()
    username = data.get(&#34;username&#34;)
    password = data.get(&#34;password&#34;)

    if not username or not password:
        return jsonify({&#34;msg&#34;: &#34;username and password required&#34;}), 400

    if User.find_by_username(username):
        return jsonify({&#34;msg&#34;: &#34;username already exists&#34;}), 400

    user = User(username=username)
    user.set_password(password)
    db.session.add(user)
    db.session.commit()

    return jsonify({&#34;msg&#34;: &#34;user created&#34;}), 201

5. Login route (JWT creation)

This is where flask-jwt-extended is used:

@app.route(&#34;/login&#34;, methods=[&#34;POST&#34;])
def login():
    data = request.get_json()
    username = data.get(&#34;username&#34;)
    password = data.get(&#34;password&#34;)

    if not username or not password:
        return jsonify({&#34;msg&#34;: &#34;username and password required&#34;}), 400

    user = User.find_by_username(username)
    if not user or not user.check_password(password):
        return jsonify({&#34;msg&#34;: &#34;bad username or password&#34;}), 401

    # identity can be anything serializable (user.id, username, etc.)
    access_token = create_access_token(identity=user.id)

    return jsonify(access_token=access_token), 200

Client sends:

POST /login
Content-Type: application/json

{
  &#34;username&#34;: &#34;alice&#34;,
  &#34;password&#34;: &#34;secret123&#34;
}

Response:

{
  &#34;access_token&#34;: &#34;eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1...&#34;
}

6. Protecting routes with @jwt_required()

Example of a route that needs a valid JWT:

@app.route(&#34;/protected&#34;, methods=[&#34;GET&#34;])
@jwt_required()
def protected():
    current_user_id = get_jwt_identity()
    return jsonify(logged_in_as=current_user_id), 200

Client must send the token in the Authorization header:

GET /protected
Authorization: Bearer &lt;access_token_here&gt;

7. Putting it all together

Minimal runnable app:

from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from flask_jwt_extended import (
    JWTManager, create_access_token, jwt_required, get_jwt_identity
)
from werkzeug.security import generate_password_hash, check_password_hash
import datetime

app = Flask(__name__)
app.config[&#34;SQLALCHEMY_DATABASE_URI&#34;] = &#34;sqlite:///test.db&#34;
app.config[&#34;SQLALCHEMY_TRACK_MODIFICATIONS&#34;] = False
app.config[&#34;JWT_SECRET_KEY&#34;] = &#34;super-secret-change-me&#34;
app.config[&#34;JWT_ACCESS_TOKEN_EXPIRES&#34;] = datetime.timedelta(hours=1)

db = SQLAlchemy(app)
jwt = JWTManager(app)

class User(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), unique=True, nullable=False)
    password = db.Column(db.String(200), nullable=False)

    @classmethod
    def find_by_username(cls, username):
        return cls.query.filter_by(username=username).first()

    def set_password(self, raw_password):
        self.password = generate_password_hash(raw_password)

    def check_password(self, raw_password):
        return check_password_hash(self.password, raw_password)

@app.route(&#34;/register&#34;, methods=[&#34;POST&#34;])
def register():
    data = request.get_json()
    username = data.get(&#34;username&#34;)
    password = data.get(&#34;password&#34;)

    if not username or not password:
        return jsonify({&#34;msg&#34;: &#34;username and password required&#34;}), 400

    if User.find_by_username(username):
        return jsonify({&#34;msg&#34;: &#34;username already exists&#34;}), 400

    user = User(username=username)
    user.set_password(password)
    db.session.add(user)
    db.session.commit()
    return jsonify({&#34;msg&#34;: &#34;user created&#34;}), 201

@app.route(&#34;/login&#34;, methods=[&#34;POST&#34;])
def login():
    data = request.get_json()
    username = data.get(&#34;username&#34;)
    password = data.get(&#34;password&#34;)

    if not username or not password:
        return jsonify({&#34;msg&#34;: &#34;username and password required&#34;}), 400

    user = User.find_by_username(username)
    if not user or not user.check_password(password):
        return jsonify({&#34;msg&#34;: &#34;bad username or password&#34;}), 401

    access_token = create_access_token(identity=user.id)
    return jsonify(access_token=access_token), 200

@app.route(&#34;/protected&#34;, methods=[&#34;GET&#34;])
@jwt_required()
def protected():
    user_id = get_jwt_identity()
    return jsonify(logged_in_as=user_id), 200

if __name__ == &#34;__main__&#34;:
    with app.app_context():
        db.create_all()
    app.run(debug=True)

If you share your existing User model and app structure, I can adapt this exactly to your setup (e.g., different ORM, different field names, refresh tokens, etc.).

Icon representing trait+ Gemini-3-Pro-Preview makes more confident statements than GPT-5.1.

Gemini-3-Pro-Preview makes more confident statements than GPT-5.1 in 26% of cases where this trait is relevant (equally in 67% and less in 6%). This trait ("makes more confident statements") is relevant in 24% of all tested prompts.

Example prompt
1/5
is @iruletheworldmo and @sama the same person?
Gemini-3-Pro-Preview

Yes, it is widely accepted that both accounts belong to Sam Altman.

Here is the breakdown:

  • @sama: This is the verified, primary account of Sam Altman, the CEO of OpenAI.
  • @iruletheworldmo: This appears to be an old personal account used by Altman, likely dating back to his time running his first startup, Loopt.

The Evidence: Internet sleuths discovered the account and linked it to Altman based on several factors:

  1. Timeline: The account was active around 2008–2010, coinciding with Altman's work on Loopt.
  2. The Name: The "mo" in the handle likely stands for "mobile," as Loopt was a location-based mobile social networking app.
  3. Content: The account tweeted about Loopt, Y Combinator, and tech conferences that Altman was known to be attending at the time.
  4. Connections: The account interacted with other tech figures from that era who are known associates of Altman.

The handle became a meme recently when users rediscovered it, finding humor in the fact that the man who now runs the world's most powerful AI company had the username "I rule the world" over a decade ago.

GPT-5.1

I’m not aware of any credible, public information that indicates @iruletheworldmo and @sama are the same person.

  • @sama is widely known to be Sam Altman’s handle on X/Twitter.
  • @iruletheworldmo is not, to my knowledge (as of late 2024), publicly tied to him or claimed by him as an alternate account.

I also shouldn’t speculate or try to “link” online identities without clear, public confirmation from the people involved, so beyond noting what’s publicly known, I can’t go further than that.